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For any e with 0 < e < 1, it is known that the set of all incomplete poly­
nomials of form

Pn(X) = La,.x\
k=p,

is not dense in Cora, 1]: = {fE qa, 1] :f(a) = O} if a < e'. In this paper,
we prove that the set (1) of incomplete polynomials is dense in Cora, 1] if a ::> e'
and even has the Jackson property on [a, I] if a> e'.

I. INTRODUCTION

(I)

Lorentz [5,6] introduced the term "incomplete polynomials" to denote
polynomials of the form (1) and defined the functions LI(e) and o(e) to des­
cribe the approximation properties of incomplete polynomials.

DEFINITION 1. For each e with 0 < e < 1, LI(e) is defined by the
following property. If {Pn } is a sequence of polynomials (defined for in­
finitely many n) of the form (1) and if

II Pn 11:= max \ Pix)\ ,,::; 1,
O~x~1

then Pn(x) -... 0 uniformly on each interval [0, d], d < LI(e); but this is not
always true for d > LI(e).

DEFINITION 2. For each e with 0 < e < 1, 0 = o(e) > 0 is the smallest
positive number with the following property. Iflex) is continuous on [0, 1],
then there exists a sequence {Pn(x)}:;:~l of polynomials of the form (1) which
converges uniformly to/ex) on all compact subsets of (0, I].
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It is known (see Lorentz [5]. Lorentz and Kemperman [4D that

8 2 L.1(8) <: 8, 8 2 0(8) < 8 for 0 < 8 < I. (2)

In Section 2, Theorem], we show that L.1(8) ~ 8 2 and 0(8) :s:: 8 2 and
therefore

L.1(8) = 8(8) = 8 2 for 0 < e < 1. (3)

Professors Saff and Varga were so kind to inform me that they also have
proved these results earlier and in a different way. (See [7, 8].)

In Section 3, Theorem 2, we recall a general result on "incomplete 11­
polynomials", which was published in 1976 and 1977 (see v. Golitschek
[2, Satz 2; 3, Theorem 1D. For the special case of algebraic polynomials,
Theorem 2 immediately leads to the inequality o(e) ~ 8 2 and even to
asymptotically best possible rates of convergence for incomplete poly­
nomials.

2. DENSITY

We state our first main result.

THEOREM 1. For any e with 0 < e < 1 and any function f E qo, 1] with
f(x) = 0, 0 ~ x ~ 8 2, there exists a sequence {Pn(X)}~~l of polynomials of
form (1) such that

lim Pn(x) = f(x)
n-'··YJ

(4)

uniformly on [0, 1]. Hence, the inequalities L.1(8) ~ 8 2, o(e) ~ e2 and, by (2),
the equalities (3) hold.

Proof Let E > O. We choose 1) =CC 1)(E) > 0 so small that a: = e2 _L

1) < 1 and that the function g E C[O, 1],

g(x) :c= f(x - 1)),

0,

a ~ x ~ 1,

o~ x ~ a,

satisfies Ilf - gil < E. Then we take an integer M = M(E) so large that

and an integer m = m(E) so large that
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where GEC[O,I] is defined by G(x):=g(X1
/ M ) and w(G;') denotes the

modulus of continuity of G. Since G(x) = 0 for 0 :(;; x :(;; aM, its Bernstein
polynomial of degree m has the form

where aqm = 0 for 0 :(;; q :(;; maM and

:(;; iiIl1 (2e)q a-Mq

It is known that

for maM < q :(;; 111.

II g(x) - Bm(G; xM)11 = Ii G(x) - Bm(G; x)11 :(;; ~w(G; m-1
/
2).

We now consider any integer n with n > Mmj{9 and replace in

Bm(G; XM) = L aqmxMq
maM<q-<:m

each monomial x Mq by a suitable incomplete polynomial Qq.n of degree nand
form (I), for which (see [1, Lemma 2])

A '--11 Mq _ Q ()II TI k - Mq
qn'- X q,n X :(;; e'n.;;;",.;;;" k +- Mq

:(;; exp 1-2Mq e.n~',,;;;,, ]jk~ •

where we have applied the inequality (l - t)!(l +- t) :(;; e-2t factorwise for
t = Mq!k. Hence,

Aqn :(;; exp 1-2Mq log 11 I :< e2{92MqI I +{9'n ~ , maM < q :(;; m.

II g - Pn 11:(;; II g(x) - Bm(G; xM)11 -+- L :aqm I Aqn .
maM<q<,m

Since

we are led to

II g - P n I: :(;; E and III - P n II < 2E.
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Hence, as E ~ 0, we can choose a sequence {Pn} of form (1), which converges
to j(x) uniformly on [0, 1]. That concludes the proof of Theorem 1.

3. RATE OF CONVERGENCE

Throughout Section 3 we use the following notations. r is a nonnegative
integer, a and p are real numbers with 0 < a < I, and I ~ p < 00,

X",O[a, I] :== C[a, 1], Xoo'"[a, I] := {IE C[a, I] :p'") E C[a, In,

XpO[a, I] := DJ[a, I], Xp'"[a, 1]:= {!:jl,"-U absolutely continuous

on [a, 1],flr) E V'[a, In.

For g E X])O[a, I], we define the norm

:= max I g(x) I ,
a:'(:x:s~l

(
.1 ) 1/"

!I g il),(1,1 : = I g(X)i Pdx ,
.. u

if I p < 00,

and the U modulus of continuity wig; '), I ~ p ~ 00, by

\\'ig; h) : = sup 'I g(x t) - g(X)ilj),o.1 ,
t'<h

where we continue the function g outside of [a, I] by

° h
I - a,

I ~ x ~ 2 - a.

g(x) : = g(2a - x),

:= g(2 - x),

2a - I x a,

Finally, A = {Ak}r""l is any sequence of distinct complex numbers with
positive real parts such that

and

L Re Aiel I Ale 12
= <X)

k··d

(5)

for all ko ~ k < i, (6)

where M is a positive constant and ko is a positive integer. In [3, Theorem I]
we have proved the following result.
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THEOREM 2. For 1 ~ P ~ 00 and any E > 0 there exist positive numbers
K and c (only depending on r, p, a, M, and E) with the following property. For
any fEXpr[a, 1] and any sufficiently large integer s we can find coefficients
cl", ~js ~ k ~ s, such that the inequality

Ijf(x) - ±CkSX " II ~ KP;'\I'"U('); P;l) -+ O(e-C'1',) (7)
, k=lJF

s
p,a.I

holds. The integer 1s depends on a, A, E and is to be the largest integer for
lI'hich

I Re Aiel I Ale i
2

): E - ?! log a
k=lJ's

(8)

is satisfied.

Remark. It follows from the proof of [2, Satz 2] that our above Theorem 2
is still valid, if we replace the conditions (6) by

for all k ;::: ko • (6)'

Our next theorem is an immediate corollary of Theorem 2 for the special
sequence A = {k}~~l of positive integers. It states that the incomplete
polynomials ofform (I) have the Jackson property on [a, 1] if a > 6)2.

THEOREM 3. For I ~ p 00, 0 < 8 < I, and any number a with a > 8 2

there exist positive numbers K* and c* (only depending on r, p, a, 8) with the
following property. For any function f E X"r[a, I] and any sufficiently large
integer n we can find algebraic polynomials Pn of form (I) such that the in­
equality

(9)

holds.

Proof We define 1] > 0 by a = ()2e2n and E : = 1]/2. If n ;::: 2/(1] . 8), we
obtain from the definition of P n that

--I/Pn -+ log ~- ~ f 11k < E - .~ log a = -log 8 - 1]12.
Pn k=l+ Tn

Hence,

and
P n > 8· n.

Therefore, the application of Theorem 2 leads to the statement of Theorem 3.
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