Approximation by Incomplete Polynomials

M. v. Golitschek
Institut für Angewandte Mathematik und Statistik, Universität Würzburg. 8700 Würzburg, West Germany
Communicated by G. G. Lorentz

Received September 20, 1978

For any Θ with $0<\Theta<1$, it is known that the set of all incomplete polynomials of form

$$
\begin{equation*}
P_{n}(x)=\sum_{k=\mu}^{n} a_{k} x^{k}, \quad \mu \geqslant \Theta \cdot n \tag{1}
\end{equation*}
$$

is not dense in $C_{0}[a, 1]:=\left\{f \in C[a, 1]: f(a)=0 ;\right.$ if $a<\Theta^{2}$. In this paper, we prove that the set (1) of incomplete polynomials is dense in $C_{0}[a, 1]$ if $a \geqslant \theta^{2}$ and even has the Jackson property on $[a, 1]$ if $a=\theta^{2}$.

1. Introduction

Lorentz [5,6] introduced the term "incomplete polynomials" to denote polynomials of the form (1) and defined the functions $\Delta(\Theta)$ and $\delta(\Theta)$ to describe the approximation properties of incomplete polynomials.

Definition 1. For each Θ with $0<\Theta<1, \Delta(\Theta)$ is defined by the following property. If $\left\{P_{n}\right\}$ is a sequence of polynomials (defined for infinitely many n) of the form (1) and if

$$
\left\|P_{n}\right\|:=\max _{0 \leqslant x \leqslant 1}\left|P_{n}(x)\right| \leqslant 1
$$

then $P_{n}(x) \rightarrow 0$ uniformly on each interval $[0, d], d<\Delta(\Theta)$; but this is not always true for $d>\Delta(\Theta)$.

Definition 2. For each Θ with $0<\Theta<1, \delta=\delta(\Theta)>0$ is the smallest positive number with the following property. If $f(x)$ is continuous on $[\delta, 1]$, then there exists a sequence $\left\{P_{n}(x)\right\}_{n=1}^{\infty}$ of polynomials of the form (1) which converges uniformly to $f(x)$ on all compact subsets of $(\delta, 1]$.

It is known (see Lorentz [5], Lorentz and Kemperman [4]) that

$$
\begin{equation*}
\Theta^{2} \leqslant \Delta(\Theta)<\Theta, \Theta^{2} \leqslant \delta(\Theta) \leqslant \Theta \quad \text { for } 0<\Theta<1 \tag{2}
\end{equation*}
$$

In Section 2, Theorem 1, we show that $\Delta(\Theta) \leqslant \Theta^{2}$ and $\delta(\Theta) \leqslant \Theta^{2}$ and therefore

$$
\begin{equation*}
\Delta(\Theta)=\delta(\Theta)=\Theta^{2} \quad \text { for } \quad 0<\Theta<1 \tag{3}
\end{equation*}
$$

Professors Saff and Varga were so kind to inform me that they also have proved these results earlier and in a different way. (See [7, 8].)

In Section 3, Theorem 2, we recall a general result on "incomplete A polynomials", which was published in 1976 and 1977 (see v. Golitschek [2, Satz 2; 3, Theorem 1]). For the special case of algebraic polynomials, Theorem 2 immediately leads to the inequality $\delta(\Theta) \leqslant \Theta^{2}$ and even to asymptotically best possible rates of convergence for incomplete polynomials.

2. Density

We state our first main result.
Theorem 1. For any Θ with $0<\Theta<1$ and any function $f \in C[0,1]$ with $f(x)=0,0 \leqslant x \leqslant \Theta^{2}$, there exists a sequence $\left\{P_{n}(x)\right\}_{n=1}^{\infty}$ of polynomials of form (1) such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{n}(x)=f(x) \tag{4}
\end{equation*}
$$

uniformly on $[0,1]$. Hence, the inequalities $\Delta(\Theta) \leqslant \Theta^{2}, \delta(\Theta) \leqslant \Theta^{2}$ and, by (2), the equalities (3) hold.

Proof. Let $\epsilon>0$. We choose $\eta=\eta(\epsilon)>0$ so small that $a:=\Theta^{2}+$ $\eta<1$ and that the function $g \in C[0,1]$,

$$
\begin{array}{rlrl}
g(x) & :=f(x-\eta), & & a \leqslant x \leqslant 1 \\
: & = & 0, & \\
0 & \leqslant x \leqslant a,
\end{array}
$$

satisfies $\|f-g\|<\epsilon$. Then we take an integer $M=M(\epsilon)$ so large that

$$
4 e^{\Theta^{2 M}} a^{-M} \leqslant 1
$$

and an integer $m=m(\epsilon)$ so large that

$$
\frac{5}{4} w\left(G ; m^{-1 / 2}\right)+\|f\| e^{2} 2^{1-m a^{M}} \leqslant \epsilon
$$

where $G \in C[0,1]$ is defined by $G(x):=g\left(x^{1 / M}\right)$ and $w(G ;)$ denotes the modulus of continuity of G. Since $G(x)=0$ for $0 \leqslant x \leqslant a^{M}$, its Bernstein polynomial of degree m has the form

$$
B_{m}(G ; x):=\sum_{j=\mathbf{0}}^{m} G\left(\frac{j}{m}\right)\binom{m}{j} x^{j}(1-x)^{m-j}=\sum_{q=0}^{m} a_{q m} x^{q},
$$

where $a_{q m}=0$ for $0 \leqslant q \leqslant m a^{M}$ and

$$
\begin{aligned}
\left|a_{q m}\right| & =\left|\sum_{m a^{M}<j \leqslant q} G\left(\frac{j}{m}\right)\binom{m}{j}\binom{m-j}{m-q}(-1)^{q-j}\right| \leqslant\|G\|\binom{m}{q} 2^{q} \\
& \leqslant\|f\|(2 e)^{q} a^{-M q} \quad \text { for } \quad m a^{M}<q \leqslant m
\end{aligned}
$$

It is known that

$$
\left\|g(x)-B_{m}\left(G ; x^{M}\right)\right\|=\left\|G(x)-B_{m}(G ; x)\right\| \leqslant \frac{5}{4} w\left(G ; m^{-1 / 2}\right)
$$

We now consider any integer n with $n>M m / \Theta$ and replace in

$$
B_{m}\left(G ; x^{M}\right)=\sum_{m a^{M}<q \leqslant m} a_{q n} x^{M q}
$$

each monomial $x^{M q}$ by a suitable incomplete polynomial $Q_{q, n}$ of degree n and form (1), for which (see [1, Lemma 2])

$$
\begin{aligned}
A_{\eta n} & :=\left\|x^{M q}-Q_{q, n}(x)\right\| \leqslant \prod_{\Theta \cdot n \leqslant R \leqslant n} \frac{k-M q}{k+M q} \\
& \leqslant \exp \left\{-2 M q \sum_{\Theta \cdot n \leqslant n \leqslant n} 1 / k\right\},
\end{aligned}
$$

where we have applied the inequality $(1-t) /(1+t) \leqslant e^{-2 t}$ factorwise for $t=M q / k$. Hence,

$$
A_{q n} \leqslant \exp \left\{-2 M q \log \frac{n}{1+\Theta \cdot n}\right\} \leqslant e^{2} \Theta^{2 M q}, \quad m a^{M}<q \leqslant m
$$

The polynomial $P_{n}(x):=\sum_{m a^{M}<a \leqslant m} a_{q m} Q_{q, n}(x)$ is of form (1) and

$$
\left\|g-P_{n}\right\| \leqslant\left\|g(x)-B_{m}\left(G ; x^{M}\right)\right\|+\sum_{m a^{M}<q \leqslant m}\left|a_{q n}\right| A_{q n} .
$$

Since

$$
\left|a_{q m}\right| A_{q n} \leqslant\|f\|(2 e)^{q} a^{-M q} e^{2} \Theta^{2 M q} \leqslant\|f\| e^{2} 2^{-q}
$$

we are led to

$$
\left\|g-P_{n}\right\| \leqslant \epsilon \text { and }\left\|f-P_{n}\right\|<2 \epsilon
$$

Hence, as $\epsilon \rightarrow 0$, we can choose a sequence $\left\{P_{n}\right\}$ of form (1), which converges to $f(x)$ uniformly on $[0,1]$. That concludes the proof of Theorem 1.

3. Rate of Convergence

Throughout Section 3 we use the following notations. r is a nonnegative integer, a and p are real numbers with $0<a<1$, and $1 \leqslant p<\infty$,

$$
\begin{aligned}
& X_{\infty}{ }^{0}[a, 1]:=C[a, 1], X_{\infty}{ }^{r}[a, 1]:=\left\{f \in C[a, 1]: f^{(r)} \in C[a, 1]\right\} \\
& X_{p}{ }^{0}[a, 1]:=L^{p}[a, 1], X_{p}^{r}[a, 1]:=\left\{f: f^{(r-1)}\right. \text { absolutely continu ous } \\
& \text { on } \left.[a, 1], f^{(r)} \in L^{p}[a, 1]\right\} .
\end{aligned}
$$

For $g \in X_{y}{ }^{0}[a, 1]$, we define the norm

$$
\begin{aligned}
& \|g\|_{x, a, 1}:=\max _{a \leqslant x \leqslant 1}|g(x)| \\
& \|g\|_{\mu, a, 1}:=\left(\left.\int_{u}^{1} g(x)\right|^{p} d x\right)^{1 / p}, \quad \text { if } \quad 1 \leqslant p<\infty
\end{aligned}
$$

and the $L^{\prime \prime}$ modulus of continuity $w_{p}(g ; \cdot), 1 \leqslant p \leqslant \infty$, by

$$
\Vdash_{p}(g ; h):=\sup _{t \leqslant h}!g(x+t)-g(x) \|_{1, a, 1}, \quad 0 \leqslant h \leqslant 1-a,
$$

where we continue the function g outside of $[a, 1]$ by

$$
\begin{aligned}
g(x) & :=g(2 a-x), & & 2 a-1 \leqslant x \leqslant a, \\
& :=g(2-x), & & 1 \leqslant x \leqslant 2-a .
\end{aligned}
$$

Finally, $\Lambda=\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ is any sequence of distinct complex numbers with positive real parts such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \operatorname{Re} \lambda_{k} /\left|\lambda_{k}\right|^{2}=\infty \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\left|\lambda_{k} \leqslant\left|\lambda_{k+1}\right|,\left|\lambda_{i}-\lambda_{k}\right| \geqslant M(i-k) \quad \text { for all } k_{0} \leqslant k<i,\right. \tag{6}
\end{equation*}
$$

where M is a positive constant and k_{0} is a positive integer. In [3, Theorem 1] we have proved the following result.

Theorem 2. For $1 \leqslant p \leqslant \infty$ and any $\epsilon>0$ there exist positive numbers K and c (only depending on r, p, a, M, and ϵ) with the following property. For any $f \in X_{p}{ }^{r}[a, 1]$ and any sufficiently large integer s we can find coefficients $c_{k s}, \psi_{s} \leqslant k \leqslant s$, such that the inequality

$$
\begin{equation*}
\left\|f(x)-\sum_{k=\Psi_{s}}^{s} c_{k s} x^{\lambda_{k}}\right\|_{p, a, 1} \leqslant K \Psi_{s}^{-r_{1}} w_{p}\left(f^{(r)} ; \Psi_{s}^{-1}\right)+O\left(e^{-c \Psi_{s}}\right) \tag{7}
\end{equation*}
$$

holds. The integer ψ_{s} depends on a, A, ϵ and is to be the largest integer for which

$$
\begin{equation*}
\sum_{k=\Psi_{s}}^{s} \operatorname{Re} \lambda_{k} /\left|\lambda_{k}\right|^{2} \geqslant \epsilon-\frac{1}{2} \log a \tag{8}
\end{equation*}
$$

is satisfied.
Remark. It follows from the proof of [2, Satz 2] that our above Theorem 2 is still valid, if we replace the conditions (6) by

$$
\begin{equation*}
\left|\lambda_{k}\right| \geqslant M k \quad \text { for all } k \geqslant k_{0} . \tag{6}
\end{equation*}
$$

Our next theorem is an immediate corollary of Theorem 2 for the special sequence $A=\left\{k_{\}_{k=1}^{\infty}}^{\infty}\right.$ of positive integers. It states that the incomplete polynomials of form (1) have the Jackson property on $[a, 1]$ if $a>\Theta^{2}$.

Theorem 3. For $1 \leqslant p \leqslant \infty, 0<\Theta<1$, and any number a with $a>\Theta^{2}$ there exist positive numbers K^{*} and c^{*} (only depending on r, p, a, Θ) with the following property. For any function $f \in X_{p}{ }^{r}[a, 1]$ and any sufficiently large integer n we can find algebraic polynomials P_{n} of form (1) such that the inequality

$$
\begin{equation*}
\left\|f-P_{n}\right\|_{p, a, 1} \leqslant K^{*} n^{-r} w_{p}\left(f^{(r)} ; n^{-1}\right)+O\left(e^{-e^{*} n}\right) \tag{9}
\end{equation*}
$$

holds.
Proof. We define $\eta>0$ by $a=\theta^{2} e^{2 \eta}$ and $\epsilon:=\eta / 2$. If $n \geqslant 2 /(\eta \cdot \Theta)$, we obtain from the definition of Ψ_{n} that

$$
-1 / \Psi_{n}+\log \frac{n}{\Psi_{n}} \leqslant \sum_{k=1+\Psi_{n}}^{n} 1 / k<\epsilon-\frac{1}{2} \log a=-\log \Theta-\eta / 2
$$

Hence,

$$
\Psi_{n} e^{1 / \Psi_{n}}>n \cdot \Theta \cdot e^{n / 2} \geqslant n \cdot \Theta \cdot e^{1 /(n \cdot \Theta)}
$$

and

$$
\Psi_{n}>\Theta \cdot n
$$

Therefore, the application of Theorem 2 leads to the statement of Theorem 3.

Acknowlfdgment

The author wishes to thank Professor G. G. Lorentz for many helpful comments.

References

1. M. v. Golitschek, Erweiterungen der Approximationssätze von Jackson im Sinne von C. Müntz, J. Approximation Theory 3 (1970), 72-86.
2. M. v. Golitschek, Lineare Approximation durch komplexe Exponentialsummen, Math. $Z .146$ (1976), 17-32.
3. M. v. Golitscheк, Jackson's theorem for polynomials and exponential sums with restricted coefficients, in "Proceedings, Conference on Linear Spaces and Approximation, Oberwolfach, August 1977," pp. 343-358, ISNM 40, Birkhäuser Verlag, Basel, 1978.
4. J. H. B. Kemperman and G. G. Lorentz, Bounds for incomplete polynomials, preprint.
5. G. G. Lorentz, Approximation by incomplete polynomials (problems and results), in "Proceedings, Conference on Padé and Rational Approximation: Theory and Applications, Tampa, Florida, December 1976," pp. 289-302 (R. S. Varga and E. B. Saff, Eds.), Academic Press, New York, 1977.
6. G. G. Lorentz, Incomplete polynomials of best approximation, Israet J. Math. 29 (1978), 132-140.
7. E. B. Saff and R. S. Varga, The sharpness of Lorentz's theorem on incomplete polynomials, Trans. Amer. Math. Soc., in press.
8. E. B. Saff and R. S. Varga, Uniform approximation by incomplete polynomials, Internar. J. Math. Math. Sci, in press.
